设y=f(x)是(a, b)内的可导函数,X,X+ΔX是(a, b)内的任意两点,则:(A) Δy= f‘ (x)Ax(B)在x,x+Ax之间恰好...

作者: rantiku 人气: - 评论: 0
问题 设y=f(x)是(a, b)内的可导函数,X,X+ΔX是(a, b)内的任意两点,则: (A) Δy= f‘ (x)Ax (B)在x,x+Ax之间恰好有一点ξ,使Δy=f'(ξ)Ax (C)在x, x+Ax之间至少有一点ξ,使Δy=f'(ξ)Ax (D)对于x,x+ax之间任意一点ξ,使Δy=f'(ξ)Ax
选项
答案 C
解析 解:选C。这道题考察拉格朗日中值定理:如果函数f(x)在闭区间[a+b]上连续,在开区f(b)-f (a) = f'(ε)(b-a)。 依题意可得:y=f(x)在闭区间X,X+ΔX上可导,满足拉格朗日中值定理,因此可的答案C。

猜你喜欢

发表评论
更多 网友评论0 条评论)
暂无评论

访问排行

Copyright © 2012-2014 题库网 Inc. 保留所有权利。 Powered by tikuer.com

页面耗时0.0662秒, 内存占用1.03 MB, Cache:redis,访问数据库20次